ЭЛЕМЕНТЫ ТЕОРИИ ПОГРЕШНОСТЕЙ

Основная задача теории погрешностей состоит в оценке погрешности результата вычислений при известных погрешностях исходных данных.

Источники и классификация погрешностей результата

Получить точное значение при решении задачи на электронно-вычислительной машине практически невозможно. Получаемое решение всегда содержит погрешность и является приближенным.

Источники погрешностей:

- Погрешность математической модели.
- Погрешность в исходных данных.
- Погрешность численного метода.
- Погрешность округления или отбрасывания.

Метрика и понятие метрического пространства

Определение. Пусть X — произвольное непустое множество (множество чисел, векторов, функций). Числовая функция ρ , ставящая в соответствие любым двум элементам $x, y \in X$ число $\rho(x, y) \ge 0$ с выполнением условий

- 1) $\rho(x,y) = 0 \Leftrightarrow x = y$ (аксиома тождества);
- 2) $\rho(x,y) = \rho(y,x)$ (аксиома симметрии);
- 3) $\rho(x,y) \le \rho(x,z) + \rho(z,y), z \in X$, (аксиома треугольника),

называется метрикой, или расстоянием между x и y.

Определение. Множество с введённым на нём метрикой называется метрическим пространством.

На одном и том же множестве понятие метрики можно ввести разными способами. Поэтому получаются разные метрические пространства.

Примеры метрических пространств:

- 1) X = R пространство действительных чисел с метрикой $\rho(x, y) = |x y|$;
- 2) $X = \mathbb{R}^{n}$ пространство n-мерных векторов с метрикой $\rho(\mathbf{x}, \mathbf{y}) = \max_{i=1,2,...,n} |x_{i} y_{i}|;$
- 3) $X = R^n$ пространство n-мерных векторов с метрикой $\rho(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^n |x_i y_i|$;
- 4) $X = \mathbb{R}^n$ пространство n-мерных векторов с метрикой $\rho(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$;
- 5) $X = C_{[a;b]}$ пространство непрерывных функций на отрезке [a;b] с метрикой $\rho(f(x),g(x)) = \max_{x \in [a;b]} |f(x) g(x)|$.

Абсолютная и относительная погрешности

Пусть x^* — точное (и никогда неизвестное) значение некоторой величины, а x — приближенное значение этой же величины. Принятые обозначения: $x^* \approx x$ или $x \approx x^*$.

Определение. Разность $x - x^*$ или $x^* - x$ называется погрешностью значения x.

Определение. Любое неотрицательное число Δ_x , удовлетворяющее неравенству

$$\rho(x^*,x) \leq \Delta_x$$

называется абсолютной погрешностью приближённого значения x.

Определение. В пространстве R^1 абсолютной погрешностью приближённого значения x называется неотрицательное число Δ_x , удовлетворяющее неравенству

$$|x^*-x| \leq \Delta_x$$
.

Абсолютная погрешность в пространстве R^1 даёт возможность определить отрезок, в котором локализовано точное значение x^* . Действительно, т.к. $\left|x^*-x\right| \leq \Delta_x$, то $-\Delta_x \leq x^*-x \leq \Delta_x$, откуда следует

$$x - \Delta_x \le x^* \le x + \Delta_x$$

или,

$$x^* \in [x - \Delta_x; x + \Delta_x].$$

Поскольку точное значение x^* , как правило, неизвестно, за абсолютную погрешность принимается её предельное значение (предельная абсолютная погрешность или просто абсолютная погрешность):

$$\Delta_x = |x^* - x|.$$

Абсолютная погрешность является основной характеристикой вычислений.

Определение. Если известна абсолютная погрешность Δ_x приближённого значения x, то называют приближением к x^* с точностью до Δ_x .

Принята запись: $x^* = x \pm \Delta_x$.

Когда говорят, что надо получить какой-то результат с заданной точностью $\varepsilon > 0$, это означает, что его абсолютная погрешность должна быть не больше ε .

Onpedenehue. Относительной погрешностью приближенного значения x называется величина:

$$\delta_x = \left| \frac{x^* - x}{x} \right| = \frac{\Delta_x}{|x|}.$$

Пример. Вычислить абсолютную и относительную погрешность числа π . Приближенное число $\pi=3,14$. Более точное значение $\pi=3,14159$. Абсолютная погрешность (предельная абсолютная погрешность): $\Delta_{\pi}=\left|3,14159-3,1415\right|=0,00159$. Относительная погрешность: $\delta_{\pi}=\frac{0,00159}{\left|3,14\right|}=0,00506$.

Значащие цифры в записи числа

Определение. Все цифры десятичной записи числа, начиная с первой ненулевой слева, называются значащими цифрами этого числа.

Нули в конце числа всегда считаются значащими, в противном случае их не пишут. Так, число 0.05020 содержит четыре значащие цифры: 5, 0, 2, 0.

Абсолютную погрешность не следует записывать с большим количеством значащих цифр. Основной информацией, содержащейся в ней, является значение первой ненулевой цифры и десятичный разряд, в котором эта цифра расположена.

Правило. В записи абсолютной погрешности обычно оставляют одну или две значащие цифры. Для сохранения условия $\left|x^*-x\right| \leq \Delta_x$ округление при этом всегда производится с избытком.

Пример. Оценить погрешность округления числа e=2,7182818... до трёх значащих цифр: $e\approx 2,72$. Абсолютная погрешность приближения равна: $\Delta_e=\left|2,7182818...-2,72\right|=0,00171817...=0,0018=0,002$.

Как и всякое действительное число, абсолютную погрешность можно записывать в так называемой плавающей форме (с плавающей запятой): $M \cdot 10^r$, где M - мантисса числа, r - характеристика. Например, $\Delta_a = 0.0018 = 1.8 \cdot 10^{-3} = 0.18 \cdot 10^{-2}$.

Задания для самостоятельной работы

- 1. Указать границы, в которых находится точное число D, если известно его приближённое значение, найденное с точностью: а) до 0.7; б) до 0.1.
- 2. С помощью двухметровой рулетки с делениями 1 см найдена длина провода $s \approx 8,56$ м. Определить границы, в которых находится точная длина s.

Округление чисел

Правило округления чисел. Чтобы округлить число до n значащих цифр, отбрасывают все его цифры, стоящие справа от n - ой значащей цифры, или, если это нужно для сохранения разрядов чисел, заменяют их нулями. При этом:

1) если первая (слева) отбрасываемая цифра меньше 5, то все его сохраняемые цифры остаются без изменения;

- 2) если первая отбрасываемая цифра больше 5, или если она равна 5, но среди остальных отбрасываемых цифр есть ненулевые, то к последней сохраняемой цифре прибавляется единица;
- 3) если первая отбрасываемая цифра равна 5 и все остальные отбрасываемые цифры являются нулями, то последняя сохраняемая цифра остаётся неизменной, если она чётная, и увеличивается на единицу, если она нечётная.

Пусть в результате округления числа x получилось число \tilde{x} . Правило округления гарантирует, что погрешность $|x-\tilde{x}|$ не будет превышать половины единицы разряда, где находится последняя оставленная цифра.

Пример. Оценить погрешность округления числа e = 2,7182818... до трёх значащих цифр: $e \approx 2,72$. $\Delta_e = \left|2,7182818...-2,72\right| \le 0,002 \le 0,005 = \frac{0,01}{2}$ - это есть половина единицы последнего сохранённого разряда (сотых долей).

Потребность замены цифр нулями для сохранения разрядов возникает при округлении целых чисел. Например, округляя число 56998 до трёх значащих цифр, получим в результате 57000. Первый из трёх нулей является значащим, остальные два сохраняют разрядность числа — это нули округления.

Для того, чтобы по записи таких чисел можно было узнать, какой нуль значащий, а какой нет, их записывают в виде $M \cdot 10^r$, оставляя значащие нули в мантиссе. Приведённое выше число следует представить как $570 \cdot 10^2$.

Верные значащие цифры

С помощью абсолютных погрешностей определяют так называемые верные значащие цифры приближённых чисел.

Пусть приближённое число записано в виде десятичной дроби:

$$x = \overline{x_m x_{m-1} \dots x_2 x_1 x_0, x_{-1} x_{-2} \dots x_{-s}} =$$

$$= x_m \cdot 10^m + x_{m-1} \cdot 10^{m-1} + \dots + x_2 \cdot 10^2 + x_1 \cdot 10^1 + x_0 \cdot 10^0 + x_{-1} \cdot 10^{-1} + x_{-2} \cdot 10^{-2} + \dots + x_{-s} \cdot 10^{-s}$$

Определение. Значащая цифра приближённого значения x, находящаяся в разряде, в котором выполняется условие: абсолютная погрешность Δ_x не превосходит половину единицы этого разряда, называется верной в строгом (узком) смысле. Значащие цифры разрядов, где не выполняется данное условие, называются сомнительными.

Следовательно, значащая цифра x_k ($k=m,m-1,\ldots,1,0,-1,-2,\ldots,-s$) верная в строгом (узком) смысле, если $\Delta_x \leq 0,5\cdot 10^k$. Понятно, что все значащие цифры, расположенные слева от верной, также будут верными, а расположенные справа от сомнительной – сомнительными.

Соответствующие десятичные разряды также называются верными или сомнительными в строгом (узком) смысле.

Пример. Для приближённого числа x = 72,356 известна абсолютная погрешность $\Delta_x = 0,04$. Требуется определить его верные значащие цифры в строгом (узком) смысле.

Проверим цифру 7. Половина единицы её разряда $\frac{10}{2} = 5 > 0,04$:. Значит, она верная. Цифра 2: $\frac{1}{2} = 0,5 > 0,04$ - тоже верная. Верной будет и цифра 3: $\frac{0,1}{2} = 0,05 > 0,04$, а вот цифры 5 и 6 — сомнительные. Действительно, для 5: $\frac{0,01}{2} = 0,005 < 0,04$, т.е. требуемое условие нарушено.

Для выявления верных цифр числа в строгом (узком) смысле без проверки каждой из них «по определению» рекомендуется следующее правило.

Правило. Абсолютная погрешность округляется с избытком до одной значащей цифры (обозначим её буквой d). Если цифра $d \le 5$, то все значащие цифры числа левее того разряда, где находится d, будут верными в строгом (узком) смысле. В противном случае последнюю (самую правую) из этих цифр следует признать сомнительной в строгом (узком) смысле.

Пример. Даны числа и их абсолютные погрешности:

Число	Абсолютная погрешность
a = 2,645	$\Delta_a = 0,003$
b = 0,81726	$\Delta_b = 0,0052$
c = 3968	$\Delta_c = 49$

Цифры 2, 6, 4 числа a верные в строгом (узком) смысле, т.к. соответствующая разряду тысячных долей цифра абсолютной погрешности 3 меньше 5.

Число имеет только одну верную значащую цифру 8 в строгом (узком) смысле. Действительно, при округлении с избытком его абсолютной погрешности получается число 0,006, содержащее в разряде тысячных долей значащую цифру d=6: $\Delta_b=0,0052\approx0,006$. Казалось бы, за верные цифры числа b=0,81726 следует взять 8 и 1, однако, согласно правилу, т.к. d>5, то разряд сотых долей числа b=0,81726 «портится» и последняя (самая правая) из цифр записи числа b, равная 1, которая стоит в разряде сотых долей, признается сомнительной.

У целого числа цифры верны в строгом (узком) смысле в разрядах тысяч и сотен: это 3 и 9, т.к. соответствующая разряду десятков цифра абсолютной погрешности d = 4 < 5.

Верная цифра в строгом (узком) смысле приближённого числа не обязана буквально совпадать с цифрой соответствующего разряда точного числа. Например, пусть $x^*=1,999-1,000$ — точное число, x=2,000 — его приближение. Тогда $\Delta_x=\left|2,000-1,999\right|=0,001$ и, следовательно, три первые цифры 2, 0, 0 числа x верные, хотя ни одна не совпадает с соответствующей цифрой числа x^* .

Нередко бывает так, что исходные числовые данные приводятся без оценки их погрешностей, но с известными верными цифрами в строгом (узком) смысле. Возникает задача: найти абсолютные погрешности этих чисел, необходимые для последующего учёта погрешностей.

Решение следует из определения верной цифры. Если все три цифры числа x=4,06 верные в строгом (узком) смысле, это означает, что $\Delta_x \le 0,005$. Во избежание искусственного завышения степени точности числа нельзя брать конкретное $\Delta_x < 0,005$, например $\Delta_x = 0,004$, поэтому принимаем $\Delta_x = 0,005$. Отсюда следует правило.

Правило. За абсолютную погрешность приближённого числа с известными значащими цифрами принимается половина единицы того разряда, где находится последняя верная цифра в строгом (узком) смысле.

Обратим внимание на информационную значимость нулей, записанных в конце числа. Так, если известно, что все цифры чисел 3,2 и 3,20 верные, то эти записи не равноценные. За абсолютную погрешность первого числа можно взять 0,05, а второго – 0,005.

Когда в конце числа получаются верные значащие нули округления, их следует сохранять.

Пусть x = -17,2986, $\Delta_x = 0,002$ и требуется округлить x до верных цифр в строгом (узком) смысле. Тогда пишем $x \approx -17,30$, но не $x \approx -17,3$.

Округление целого числа c=3968 с абсолютной погрешностью $\Delta_c=49$, до верных цифр в строгом (узком) смысле дает результат: $c\approx 4000=40\cdot 10^2$.

В приближенных вычислениях часто используется другое определение верной значащей цифры.

Определение. Если абсолютная погрешность числа не превосходит единицы того разряда, где находится значащая цифра, то эта цифра называется верной в нестрогом (широком) смысле.

Таким образом, для верной в нестрогом (широком) смысле цифры x_k должно выполняться неравенство $\Delta_k \leq 1 \cdot 10^k$. Так, у числа $5,6\underline{3}07$ с абсолютной погрешностью 0,006 цифра 3 в разряде сотых долей верна в нестрогом (широком) смысле, ибо $0,006 < 10^{-2} = 0,01$. Понятно, что верными будут и предыдущие цифры 5 и 6.

Нетрудно проверить: верная в строгом (узком) смысле цифра будет верной и в нестрогом (широком) смысле, а обратном утверждение не имеет места.

В дальнейшем, если не оговорено противное, трактовка понятия верной цифры будет подразумевать понятие верной цифры в строгом (узком) смысле.

Правило записи приближенных чисел

При решении задач приближенными методами, прежде всего надо обеспечивать необходимую точность результатов. Однако элементарная вычислительная культура требует не забывать при этом об экономии времени и объема работы независимо от того,

как проводятся расчеты — вручную с помощью простейших калькуляторов или с использованием мощных компьютерных систем автоматизации вычислений.

Это вопросы тесно связаны с количеством цифр в представлении числовых данных. Во многих случаях для достижения требуемой точности нет нужды пользоваться всеми имеющимися ресурсами вычислительных устройств и выписывать все предоставляемые ими цифры результатов. Следует иметь в виду: точность вычислений зависит не от количества значащих цифр приближенных чисел, а от количества их верных значащих цифр.

В то же время сохранять всегда только верные цифры неразумно. Во-первых, оценки погрешностей обычно проводятся с завышением, поэтому некоторые значащие цифры, которые с точки зрения теории должны считаться сомнительными, на самом деле могут оказаться верными. Во-вторых, если в процессе вычислений каждый раз округлять до верных цифр, то погрешности округлений приведут к тому, что последние цифры станут неверными.

Правило записи приближенных чисел. В промежуточных результатах вычислений обычно сохраняются одна-две сомнительные цифры, а окончательные результаты округляют с сохранением не более одной сомнительной цифры.

Первая рекомендация позволяет избегать накопления погрешностей округлений в верных разрядах. Если вычислений немного, достаточно одной запасной цифры. Напротив, при больших расчетах иногда оказывается оправданным сохранение в промежуточных результатах трех таких цифр.

В ответах часто оставляют только верные цифры. Это удобно, так как по записи числа сразу видно, какие цифры у него верные. Однако здесь надо учесть то, что при округлении некоторых приближенных чисел до верных цифр последняя цифра может оказаться верной лишь в нестрогом смысле, ибо когда к погрешности числа прибавляется погрешность округления. Взяв, например, число x=3,6159 с $\Delta_x=0,004$, то после округления верных цифр получим $\widetilde{x}=3,62$. Тогда $\Delta_{\overline{x}}=\Delta_x+\big|x-\widetilde{x}\big|=0,004+0,0041=0,0081$. Последняя сохраненная цифра 2 числа \widetilde{x} верна в нестрогом смысле, остальные цифры верны в строгом смысле, ибо $\Delta_{\overline{x}}>0,005$, но в то же время $\Delta_{\overline{x}}\leq0,01$ $\Delta_{\overline{x}}\leq0,005$.

В подобных случаях ради сохранения качества последней верной цифры целесообразно записывать ответы с дополнительной цифрой. Лишнюю цифру следует оставлять и в том случае, когда известно, что она могла оказаться сомнительной из-за заведомо грубых оценок.

Задания для самостоятельной работы

- 1. Абсолютная погрешность числа b = 36,02 равна 0,07. Найти верные значащие цифры числа b в строгом и нестрогом смысле.
- 2. Даны два числа a = 4,098 и b = 0,546 с одинаковой абсолютной погрешностью 0,002. Округлить числа до верных цифр и определить, в каком смысле будут верными последние цифры.

Относительная погрешность приближённых чисел

При приближённых измерениях и вычислениях возникает потребность в характеристике качества проделанной работы. Для этого знание только абсолютной погрешности оказывается недостаточным.

Пример. Найдена масса одного предмета x = 510,4 кг с точностью до 0,1 кг и с такой же точностью определена масса y = 0,6 кг другого предмета. Хотя $\Delta_x = \Delta_y = 0,1$, ясно, что первое измерение выполнено лучше, чем второе.

Для оценки качества измерений или вычислений вводится понятие относительной погрешности.

Определение. Относительной погрешностью (предельной относительной погрешностью) приближённого числа x ($x \neq 0$) называется неотрицательное число

$$\delta_x = \frac{\Delta_x}{|x|}.$$

Из определения относительной погрешности следует: $\Delta_x = |x| \cdot \delta_x$.

Относительную погрешность записывают с одной-двумя значащими цифрами и округляют при необходимости с избытком. Она является безразмерной величиной и поэтому часто выражается в процентах: $\delta_x = \frac{\Delta_x}{|x|} \cdot 100\%$

При фиксированной абсолютной погрешности относительная погрешность тем меньше, чем больше абсолютная величина приближённого числа. Действительно, по данным предыдущего примера: $\delta_x = \frac{0.1}{510.4} \cdot 100\% = 0.02\%$, $\delta_y = \frac{0.1}{0.6} \cdot 100\% = 17\%$. Это означает, что в найденной массе первого предмета ошибка составляет примерно 0.02%, а второго — 17%.

Задания для самостоятельной работы

- 1. Найти относительную погрешность приближённого значения 2,72 для числа e.
- 2. Приближённое значение $x=24{,}6035$ имеет относительную погрешность $\delta_x=0{,}2\%$. Найти Δ_x и верные цифры числа x.
- 3. У приближённых чисел a = -3,540 и b = 0,02 все значащие цифры верные. Найти относительные погрешности этих чисел.

Абсолютная погрешность приближённых векторов

Оценка точности вектора $\mathbf{x} = (x_1, x_2, ..., x_n)$, являющегося приближением к вектору $\mathbf{x}^* = (x_1^*, x_2^*, ..., x_n^*)$, может быть произведена относительно любого из трёх расстояний:

1)
$$\rho(\mathbf{x}, \mathbf{x}^*) = \max_{i=1,2,...,n} |x_i - x_i^*|;$$

2)
$$\rho(\mathbf{x}, \mathbf{x}^*) = \sum_{i=1}^n |x_i - x_i^*|;$$

3)
$$\rho(\mathbf{x}, \mathbf{x}^*) = \sqrt{\sum_{i=1}^n (x_i - x_i^*)^2}.$$

Пример. Для системы из трёх уравнений с тремя неизвестными найдено приближённое решение $\mathbf{x} = (1,011;2,999;-0,964)$ с абсолютной погрешностью $\Delta_{\mathbf{x}} = 0,04$. Все координаты вектора \mathbf{x} гарантированно имеют такую же абсолютную погрешность, и поэтому их значащие цифры верны в разрядах до десятых долей включительно. Если точным решением системы является вектор $\mathbf{x}^* = (1;3;-1)$, то очевидно, что погрешность координат приближённого решения значительно меньше:

$$|x_1 - x_1^*| = |1,011 - 1| = 0,011, |x_2 - x_2^*| = |2,999 - 3| = 0,001, |x_3 - x_3^*| = |-0,964 + 1| = 0,036.$$

$$\rho(\mathbf{x}, \mathbf{x}^*) = \max_{i=1,2,3} |x_i - x_i^*| = \max\{|x_1 - x_1^*|; |x_2 - x_2^*|; |x_3 - x_3^*|\} = \max\{0,011;0,001;0,036\} = 0,036 \le 0,04$$

$$\rho(\mathbf{x}, \mathbf{x}^*) = \sum_{i=1}^3 |x_i - x_i^*| = |x_1 - x_1^*| + |x_2 - x_2^*| + |x_3 - x_3^*| = 0,011 + 0,001 + 0,036 = 0,048 \le 0,05,$$

$$\rho(\mathbf{x}, \mathbf{x}^*) = \sum_{i=1}^{3} (x_i - x_i^*)^2 = (x_1 - x_1^*)^2 + (x_2 - x_2^*)^2 + (x_3 - x_3^*)^2 = 0,011^2 + 0,001^2 + 0,036^2 = 0,001418 \le 0,002$$

Задания для самостоятельной работы

Округлить координаты вектора $\mathbf{x} = (1,358; -0,6205; 3,07)$ до одной значащей цифры после запятой и найти абсолютную и относительную погрешности округления.

Абсолютная погрешность приближённых функций

Пусть $x \in [a;b] \subset R$. $f^*(x)$, f(x) принадлежат пространству непрерывных функций на [a;b] отрезке с метрикой $\rho(f(x),f^*(x)) = \max_{x \in [a;b]} |f(x)-f^*(x)|$.

Пример. Оценить погрешность вычисления функции $f^*(x) = e^x$ на отрезке $x \in [0;1]$, заменив её частичной суммой $f(x) = \sum_{k=0}^n \frac{x^k}{k!}$.

Так как
$$\forall x \in R$$
: $e^x = \sum_{k=0}^n \frac{x^k}{k!} + R_n(x)$, где $R_n(x) = \frac{e^{\theta x}}{(n+1)!} x^{n+1}$, $0 < \theta < 1$.

Так же
$$\forall x \in R: \rho(f(x), f^*(x)) = |f^*(x) - f(x)| = |R_n(x)| = \frac{e^{\theta x}}{(n+1)!} |x|^{n+1}.$$

Легко получается оценка абсолютной погрешности для функции $f^*(x) = e^x$ на отрезке

$$[0;1] \colon \Delta_{f(x),x \in [0;1]} \ge \max_{x \in [0;1]} \left| f^*(x) - f(x) \right| = \max_{x \in [0;1]} \frac{e^{\theta x}}{(n+1)!} |x|^{n+1} = \frac{e^1}{(n+1)!} \cdot 1 = \frac{e}{(n+1)!} .$$

В таблице представлен расчёт погрешностей для различного числа слагаемых в приближении:

Число слагаемых в приближении, <i>n</i>	$\max_{x \in [0;1]} \left f^*(x) - f(x) \right $	Δ_n
0	2,718281828	3
1	1,359140914	2
2	0,453046971	0,5
3	0,113261743	0,2
4	0,022652349	0,03
5	0,003775391	0,004
6	0,000539342	0,0005
7	0,000067418	0,00007
8	0,000007491	0,000008
9	0,000000749	0,0000008
10	0,00000068	0,00000007

В следующей таблице представлен расчёт погрешностей вычисления функции $f^*(x) = e^x$ на отрезке [0;1] для n=3 (в приближении 4 слагаемых). За приближённое значение принимается $f(x) = \sum_{k=0}^n \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$. При этом $\max_{x \in [0:1]} \left| f^*(x) - f_3(x) \right| < \Delta_3 = 0,2$. Следовательно, в приближённых расчётах верной будет только одна цифра, из разряда единиц.

х	f*	f	$ f^*(x)-f(x) $
0	1,0000000	1,0000000	0,0000000
0,1	1,1051709	1,1051667	0,0000043
0,2	1,2214028	1,2213333	0,0000694
0,3	1,3498588	1,3495000	0,0003588
0,4	1,4918247	1,4906667	0,0011580
0,5	1,6487213	1,6458333	0,0028879
0,6	1,8221188	1,8160000	0,0061188
0,7	2,0137527	2,0021667	0,0115860
0,8	2,2255409	2,2053333	0,0202076
0,9	2,4596031	2,4265000	0,0331031
1	2,7182818	2,6666667	0,0516152

$$\max_{x \in [0;1]} \left| f^*(x) - f(x) \right| = 0.051615162$$

Чтобы обеспечить количество верных цифр в вычислениях не менее 3, за приближённую функцию нужно взять $f(x) = \sum_{k=0}^{n} \frac{x^k}{k!}$ где $n \ge 5$.

Задания для самостоятельной работы

Оценить погрешность вычисления функции $f^*(x) = \cos x$, заменив её частичной суммой $f(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k)!}$.

Оценка погрешностей влияния аргументов на значение функции

При вычислении значения функции одной или нескольких переменных возможны два источника погрешностей:

- 1. Все аргументы функции являются точными числами, и погрешность значения функции зависит только от способа вычисления этого значения.
- 2. Среди аргументов функции есть приближённые числа. Тогда к погрешности способа вычисления значения функции добавляется погрешность, вызванная погрешностями аргументов.

Пусть в области $D \subset \mathbb{R}^2$ определена функция двух действительных переменных z = f(x, y).

Определение. Полным приращением функции z = f(x, y) в точке $(x, y) \in D$ называется разность $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$, где Δx , Δy - приращения независимых переменных x и y, такие, что $x + \Delta x, y + \Delta y \in D$.

Определение. Функция z = f(x, y), полное приращение которой в точке $(x, y) \in D$ может быть представлено в виде суммы двух слагаемых: выражения, линейного относительно Δx , и Δy , и величины бесконечно малой высшего порядка относительно $\sqrt{\Delta x^2 + \Delta y^2} \to 0$, называется дифференцируемой в точке (x, y), а линейная часть приращения называется полным дифференциалом dz в точке (x, y):

$$\Delta z(x,y) = \underbrace{f'_x(x,y) \cdot \Delta x + f'_y(x,y) \cdot \Delta y}_{dz(x,y)} + o\left(\sqrt{\Delta x^2 + \Delta y^2}\right).$$

Если
$$\sqrt{\Delta x^2 + \Delta y^2} \to 0$$
, то $\Delta z(x, y) \approx dz(x, y)$.

Этот факт можно использовать при вычислении приближённого значения функции, а также для оценки погрешности вычисления значения функции, вызванной погрешностями её аргументов.

Пусть x^* , y^* - точные значения, x, y - приближённые значения аргументов функции z = f(x,y), определённые с абсолютными погрешностями Δ_x и Δ_y . Если функция является дифференцируемой, то по определению,

$$\Delta z(x, y) \approx f_x'(x, y) \cdot \Delta_x + f_y'(x, y) \cdot \Delta_y$$
.

Откуда, по неравенству треугольника,

$$|\Delta z(x,y)| \le |f_x'(x,y)| \cdot \Delta_x + |f_y'(x,y)| \cdot \Delta_y = \Delta_z$$

Определение. За абсолютную погрешность z = f(x,y) (предельную абсолютную погрешность) Δ_z вычисления значения дифференцируемой функции двух переменных, вызванной погрешностью её аргументов x и y, принимается предельное значение приращения функции $\Delta z(x,y)$, вызванное погрешностями аргументов Δ_x и Δ_y :

$$\Delta_z = |f_x'(x, y)| \cdot \Delta_x + |f_y'(x, y)| \cdot \Delta_y$$

Определение. Относительной погрешностью δ_z вычисления значения дифференцируемой функции двух переменных $z=f\left(x,y\right)$, вызванной погрешностью её аргументов x и y, называется отношение её предельной абсолютной погрешности Δ_z , вызванной погрешностью её аргументов x и y, к модулю значения функции в точке (x,y):

$$\delta_{z} = \frac{\Delta_{z}}{\left| f(x, y) \right|}.$$

При этом $f(x, y) \neq 0$.

Поскольку $\delta_z = \frac{\left|f_x'(x,y)\right|}{\left|f\left(x,y\right)\right|} \cdot \Delta_x + \frac{\left|f_y'(x,y)\right|}{\left|f\left(x,y\right)\right|} \cdot \Delta_y, \qquad \frac{\left|f_x'(x,y)\right|}{\left|f\left(x,y\right)\right|} = \left(\ln\left|f\left(x,y\right)\right|\right)_x',$

 $\frac{\left|f_{y}'(x,y)\right|}{\left|f(x,y)\right|} = \left(\ln\left|f(x,y)\right|\right)_{y}'$, можно получить соотношение между относительной и абсолютной погрешностью вычисления функции:

$$\delta_{z} = \left(\ln\left|f\left(x,y\right)\right|\right)_{x}^{\prime} \cdot \Delta_{x} + \left(\ln\left|f\left(x,y\right)\right|\right)_{y}^{\prime} \cdot \Delta_{y} = \Delta_{\ln z}.$$

Алгоритм нахождения приближённого значения функции $z = f\left(x,y\right)$ и оценки его погрешности

Дано:
$$z = f(x, y)$$
, $x^* = x \pm \Delta_x$, $y^* = y \pm \Delta_y$

- 1. Вычислить абсолютную погрешность приближённого значения функции z = f(x, y) по формуле $\Delta_z = |f_x'(x, y)| \cdot \Delta_x + |f_y'(x, y)| \cdot \Delta_y$.
- 2. Вычислить значение функции z = f(x, y) в точке (x, y) и округлить результат до верных значащих цифр.
- 3. Вычислить относительную погрешность приближённого значения функции $z = f\left(x,y\right) \text{ по формуле } \delta_z = \frac{\Delta_z}{\left|f\left(x,y\right)\right|} \, .$
- 4. Записать вычисленное значение функции z = f(x, y) в виде $z^* = f(x, y) \pm \Delta_z$.

Пример. Вычислить значение функции z = f(x,y), и оценить абсолютную и относительную погрешности вычисления, если аргументы функции x и y являются приближёнными числами с заданными абсолютными погрешностями Δ_x и Δ_y . Верные значащие цифры определить в строгом смысле.

Дано:
$$f(x,y) = x^2 + \sin y$$
; $x = -0.68$, $\Delta_x = 0.004$; $y = 1.134$, $\Delta_y = 0.0003$.

Решение

1. Вычисление абсолютной погрешности.

$$\Delta_{z} = |f'_{x}(x, y)| \cdot \Delta_{x} + |f'_{y}(x, y)| \cdot \Delta_{y}.$$

$$f'_{x}(x, y) = 2x, \ f'_{y}(x, y) = \cos y.$$

$$f'_{x}(-0, 68; 1, 134) = 2 \cdot (-0, 68) = -1, 36, \ f'_{y}(-0, 68; 1, 134) = \cos 1, 134 \approx 0, 423038756.$$

$$\Delta_{z} = |-1, 36| \cdot 0, 004 + |0, 423038756| \cdot 0, 0003 = 0, 005567 \approx 0, 006.$$

Абсолютная погрешность округляется до одной значащей цифры. Округление выполняется с избытком!!! (т.е. $0,0023 \approx 0,003$). Поскольку последняя значащая цифра в записи абсолютной погрешности ≥ 5 , верные цифры в строго смысле при вычислении значения функции могут быть только в разряде до десятых долей включительно. Разряд сотых долей «портится» в данном случае цифрой 6.

2. Вычисление значения функции в точке (x, y) и округление с учётом абсолютной погрешности до верных значащих цифр.

Чтобы погрешность не испортила разряды до десятых долей, значение функции в точке (x, y) подсчитывается с двумя цифрами после запятой:

$$z = f(x, y) = (-0.68)^2 + \sin 1.134 \approx 0.4624 + 0.906112 = 1.368512 \approx 1.37$$
.

3. Вычисление относительной погрешности.

$$\delta_z = \frac{\Delta_z}{|z|} = \frac{0,006}{1,37} = 0,004 = 0,4\%$$

Omeem $z^* = 1,37 \pm 0,006$.

Оценка погрешностей арифметических операций

Вычисление абсолютной и относительной погрешности суммы и разности приближённых чисел:

$$z = x \pm y.$$

$$\Delta_z = |z'_x| \cdot \Delta_x + |z'_y| \cdot \Delta_y, |z'_x| = |1| = 1, |z'_y| = |\pm 1| = 1.$$

$$\Delta_z = \Delta_x + \Delta_y, \delta_z = \frac{\Delta_x + \Delta_y}{|x \pm y|}.$$

Вычисление абсолютной и относительной погрешности произведения приближённых чисел:

$$\begin{split} &z = x \cdot y \,. \\ &\Delta_z = \left| z_x' \right| \cdot \Delta_x + \left| z_y' \right| \cdot \Delta_y \,, \, \left| z_x' \right| = \left| \left(x \cdot y \right)_x' \right| = \left| y \right| \,, \, \left| z_y' \right| = \left| \left(x \cdot y \right)_y' \right| = \left| x \right| \,. \\ &\Delta_z = \left| y \right| \cdot \Delta_x + \left| x \right| \cdot \Delta_y \,, \, \, \delta_z = \frac{\left| y \right| \cdot \Delta_x + \left| x \right| \cdot \Delta_y}{\left| x \right| \cdot \left| y \right|} = \frac{\Delta_x}{\left| x \right|} + \frac{\Delta_y}{\left| y \right|} = \delta_x + \delta_y \,. \end{split}$$

Вычисление абсолютной и относительной погрешности отношения приближённых чисел:

$$z = \frac{x}{y}.$$

$$\Delta_{z} = |z'_{x}| \cdot \Delta_{x} + |z'_{y}| \cdot \Delta_{y}, |z'_{x}| = \left(\frac{x}{y}\right)'_{x} = \frac{1}{|y|}, |z'_{y}| = \left(\frac{x}{y}\right)'_{y} = \left|x \cdot \left(-\frac{1}{y^{2}}\right)\right| = \frac{|x|}{|y|^{2}}.$$

$$\Delta_{z} = \frac{1}{|y|} \cdot \Delta_{x} + \frac{|x|}{|y|^{2}} \cdot \Delta_{y} = \left|\frac{x}{y}\right| \cdot \left(\frac{\Delta_{x}}{|x|} + \frac{\Delta_{y}}{|y|}\right), \delta_{z} = \frac{\Delta_{x}}{|x|} + \frac{\Delta_{y}}{|y|} = \delta_{x} + \delta_{y}.$$

Задания для самостоятельной работы

- 1. Оценить абсолютные погрешности чисел $\cos 0,854$, $\operatorname{tg} 0,517$ и записать эти числа верными значащими цифрами при условии, что оба аргумента являются приближёнными числами с относительной погрешностью 0,004.
- 2. Доказать, что абсолютная погрешность $\ln xy \ (x, y > 0)$ равна сумме относительных погрешностей x и y.
- 3. Найти оценки погрешности значения объёма кругового цилиндра, если измерения дали радиус дна r=20 см с точностью до 0,5 см и высоту $h\approx 50$ см с точностью до 0,1 см. Вычислить объём и определить верные значащие цифры результата. Указание. Рассмотреть функцию $V(r,h)=\pi r^2 h$. Число π округлить так, чтобы погрешность его приближения не оказала существенного влияния на точность результата.

- 4. Написать формулу вычисления абсолютной погрешности Δ_x по известной абсолютной погрешности Δ_y , если y = f(x) дифференцируема в точке x и $f(x) \neq 0$.
- 5. Получен результат: $\sin 1,3834 \approx 0,982$. Если число x = 1,3834 приближённое, то сколько верных цифр достаточно, чтобы все значащие цифры числа 0,982 были верными?
- 6. Определить, до скольких цифр надо округлить число π , чтобы с точностью до 0,01 вычислить π^3 ; $\ln \pi$; e^π .
- 7. Вычислить значение функции $z=\frac{\ln x+y}{x-y}$, и оценить абсолютную и относительную погрешности вычисления, если аргументы функции x=1,23 и y=0,874 являются приближёнными числами с заданными абсолютными погрешностями $\Delta_x=0,002$ и $\Delta_y=0,0004$. Верные значащие цифры определить в строгом смысле.
- 8. Пусть у приближённых чисел a = 5,245, b = 5,244 все цифры верные. Показать, что у разности a b нет ни одной верной значащей цифры. Сравнить относительные погрешности исходных данных и полученной разности.